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ABSTRACT: A [3 + 2] cycloaddition/ring contraction R?

sequence of ylideneoxindoles with in situ-generated 2,2,2- N ]

trifluorodiazoethane without the use of any transition-metal Ry P o FsC R2
catalyst has been developed. The reaction provides efficient '\é [8+2] a ring iCFy
access to biologically important and synthetically useful CF;- 4 Qycloaddition A~ mRa [ g
containing 3,3'-cyclopropyl spirooxindoles in high yield (74— e R N/'=O heating s N\/_
99%) with high diastereoselectivity (>95:5 d.r.). (generafed in situ) R R'

pirocyclic oxindoles, especially 3,3’-cyclopropyl spiroox-
indoles, represent a ubiquitous class of biologically
important compounds. They can be also widely found in
various natural products and pharmaceuticals.' > For example,
many compounds containing the 3,3’-cyclopropyl spirooxin-
dole moiety exhibit interesting biological activities, and some
have been identified as powerful HIV-1 non-nucleoside reverse
transcriptase inhibitors (NNRTIs) as well as kinase and
arginine vasopressin inhibitors (Scheme 1).* On the other
hand, enriching the repertoire of fluorine-containing carbo- and
heterocycles has attracted extensive research efforts from
synthetic and medical chemists over the past decade because
of the unique fluorine effect on the physiochemical properties
of pharmaceuticals and drug candidates.’ In this context, the
search for efficient and powerful methodologies for the
construction of highly substituted and functionalized carbo-
and heterocyclic rings bearing CF; moieties has recently
become an attractive research topic, since the incorporation of
CF; groups into drugs always leads to significant improvements
in lipophilicity, binding selectivity, and metabolic stability
compared with the parent molecules.’®
Recently, the highly reactive compound 2,2,2-trifluorodiazo-
ethane (CF;CHN,) has been identified as a robust C; unit for
the synthesis of CFj-containing cyclopropane derivatives.”
Notably, Carreira and co-workers have demonstrated that this
type of reagent can be easily generated in situ from
commercially available CF;CH,NH,-HCI in the presence of
NaNO,.* Accordingly, harsh reaction conditions and direct
handling of toxic, gaseous, and explosive CF;CHN, can be
avoided by using this strategy. As a result, a wide range of
transition-metal-promoted cyclopropanations of various termi-
nal olefins and alkynes have been accomplished, providing
efficient access to the corresponding structurally diverse CF;-
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22 examples
74-99% yields
>95:5 d.r. for all cases

containing small-ring molecules with high reaction efficiency
(Scheme 2, eq 1). Other impressive work has come from the
Mykhailiuk group, who reported the cycloaddition of in situ-
generated CF;CHN, with a-methylene aminocarboxylates to
prepare 1-amino-2-(trifltuoromethyl)cyclopropane-1-carboxylic
esters, albeit with relatively low diastereoselectivity.” Quite
recently, the Ma group developed the Ag,0O-mediated [3 + 2]
cycloaddition reaction of in situ-generated CF;CHN, with
terminal alkynes, which furnishes a diverse set of biologically
important 3-(trifluoromethyl)pyrazoles in good yields (Scheme
2, eq 2)."” Despite the advances being made, trisubstituted
electron-deficient alkenes still remain rarely exploited in
cycloaddition reactions with the use of CF;CHN, as a CF;
synthon. As part of our ongoing research program on
developing new cascade reactions to construct carbo- and
heterocyclic systems,'’ we have developed a highly efficient
sequential [3 + 2] cycloaddition/ring contraction reaction of
CF;CHN, with ylideneoxindoles under metal-free conditions.
The reaction provides access to densely functionalized CFj-
containing 3,3'-cyclopropyl spirooxindoles in high yields and
stereoselectivities (Scheme 2, eq 3).

Initially, ethyl (E)-2-(1-methyl-2-oxoindolin-3-ylidene)-
acetate (1a) was chosen as the model substrate to react with
CF;CHN,, which was generated in situ from CF;CH,NH,-HCI
and NaNO, in DCM/H,0 at 0 °C. To our delight, the initial
[3 + 2] cycloaddition occurred smoothly to give the
corresponding cycloadduct 3a in 87% isolated yield with
excellent regioselectivity and diasteroselectivity (Table 1, entry
1). The structure of 3a was unambiguously confirmed by single-
crystal X-ray analysis.'> Significantly, the subsequent ring

Received: January 6, 2014
Published: February 7, 2014

dx.doi.org/10.1021/jo500019a | J. Org. Chem. 2014, 79, 2296—2302


pubs.acs.org/joc

The Journal of Organic Chemistry

Scheme 1. Representative Therapeutic Agents Containing 3,3’-Cyclopropyl Spirooxindole Scaffolds

HIV-1NNRTI inhibitor

N<

kinase inhibitor

NH

arginine vasopressin inhibitor

Scheme 2. Design of the [3 + 2] Cycloaddition/Ring Contraction Sequence for the Synthesis of CF;-Containing 3,3'-

Cyclopropyl Spirooxindoles

Previous work:

R cat. [M]
>: + CF4CHN, M =Fe, Co, Rh et al. R;A (1)
R? A R CF;
(generated in situ) (Carreira et al.[®l)
o Ag,0/NaOAc HN-N
R="~ CFfHNZ DMF, rtto 45 °C, 1-5 h RJ\%CFz (2)
(generated in situ) (Ma et al.l'%)

Our work: sequential [3+2] cycloaddition/ring contraction under metal-free conditions

RY [3+2]
Y/ cycloaddition
X
3l /=N
R ° [CFg ]
R metal-free

ring

Table 1. Optimization of the Reaction Conditions®

EtO,C
1) aq. NaNO,,
/ . NH;Cl solvent
o) CF, temp.
N
Me
1a 2
entry T (°C) solvent t (h)
1 0 DCM 72
2 25 DCM 60
3 40 DCM 48
S 25 CHCl, 36
6 25 DCE 48
7 25 toluene 36
8¢ 25 toluene 36
9¢f 25 toluene 96

EtO,C

~N
N 2) toluene
o reflux
N
Me
3a
yield of 3a (9%)® d.r. of 3a° yield of 4a (9%)®
87 >98:5 87
87 >95:5 nd.?
81 >95:5 n.d.
92 >9S:S n.d.
83 >95:5 n.d.
90 >95:5 n.d.
n.d.° >95:5 91
n.d.c >98:5 84

“Reaction conditions: 1a (0.2 mmol, 1.0 equiv), CF;CH,NH,-HClI (5 equiv), NaNO, (6 equiv), solvent (3.0 mL), H,0 (0.2 mL). bIsolated yields
based on 1a. “Determined by 'H NMR analysis. “n.d. = not determined. “The reaction mixture was directly warmed to reflux for 1 h upon complete
consumption of la. fZ/NaNOZ (0.6/0.72 mmol, 3/3.6 equiv) were used.

contraction reaction of 3a also worked very well in refluxing
toluene to afford the final CF;-substituted 3,3’-cyclopropyl
spirooxindole 4a in 87% overall yield with excellent
diasteroselectivity. These results encouraged us to investigate
other reaction parameters to further improve the reaction
efficiency. It was found that the reaction at room temperature
gave a comparable yield of 3a with reduced reaction time, while
elevating the temperature to 40 °C resulted in somewhat
inferior results, probably because of the instability and volatility
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of CF;CHN, (Table 1, entry 2 vs entry 3). A brief screen of
reaction media showed that toluene was the best solvent of
choice (Table 1, entry 7). Notably, the sequential [3 + 2]
cycloaddition/ring contraction reaction could be carried out in
a one-pot fashion in toluene, affording the desired product 4a
in 91% overall yield (Table 1, entry 8). The reaction with
reduced amounts of CF;CH,NH,-HCl and NaNO, led to a
slight drop in the overall yield (Table 1, entry 9)."
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Scheme 3. Scope of the [3 + 2] Cycloaddition/Ring Contraction Sequence®

0O
R3
p 1)NaNO, (6 eq.), toluene/ H,0O
SN N NH;Cl 0-25 °C, 24-48 h
14
R N © CF3; 2)110°C for 1-1.5h
R2 (5eq.)
1 2
EtO,C EtO,C
.CFy WCFy CF4
/ MeO / F /
=0 =0 =0
N N N
Me Me Me
4a, 91% yield 4b, 88% yield 4c, 81% yield 4d, 87% yield
>95:5d.r. >95:5d.r. >95:5d.r. > 95:5d.r.

4e, 91% yield
>95:5d.r.

>95:5d.r.

4i, 99% yield 4j, 91% yield
>95:5d.r. >95:5d.r.
EtO,C,
|\‘CF3
=0

4m, 85% yield 4n, 82% yield

>95:5d.r. >95:5d.r.
EtO,C, MeO,C,
CF,4 CFj
=0 =0
N N
Allyl Me
4q, 74% yield 4r, 88% yield
>95:5d.r. >95:5d.r.

Me
4u, 98% yield
>95:5d.r.

>95:5d.r.

4h, 96% yield

>95:5d.r. >95:5d.r.
EtO,C
\CF3
=0
N
Me
Fs
4k, 93% yield 41, 79% yield
>95:5d.r. >95:5d.r.

\
Bn

40, 92% yield 4p, 85% yield
>95:5d.r. >95:5d.r.

HIV-1 NNRTI inhibitor

>95:5d.r. >95:5d.r.
1 EtO,C. Me .
1 I
E Br. Me '
| o |
' N 1
! H !
( 1
: |

“Reaction conditions: see entry 8 of Table 1. Yields of isolated products are shown; all of the d.r. values were determined by '"H NMR analysis.

With the optimized conditions in hand, we then investigated
the substrate scope of this tandem reaction. As shown in
Scheme 3, a wide range of 3-ylideneoxindoles were found to be
suitable for the reaction. Both electron-donating groups (e.g.,
Me and MeO) and electron-withdrawing groups (e.g, F, Br,
NO,, CF;0, Cl, and CF;) were well-tolerated under the
reaction conditions, and the corresponding CF;-containing
3,3'-cyclopropyl spirooxindoles 4a—m were obtained in 79—
99% vyield with >95:5 dr. Importantly, the above-mentioned
halo-substituted products allowed for further transformations
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through transition-metal-catalyzed cross-coupling reactions.
Notably, the products bearing CF;O, CF;, and F groups on
the aromatic ring (4g, 88% yield; 41, 79% yield; 4m, 85% yield;
Scheme 3) should also be of significant interest to medicinal
chemists because of the potential effect of fluorine on the
physiochemical properties of these molecules.

Moreover, the effects of varying the N-protecting group and
the ester moiety of the 3-ylideneoxindole were examined. As
shown in Scheme 3, 3-ylideneoxindoles with N-protecting
groups such as Ph (1o), Bn (1p), allyl (1q) or without a
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Scheme 4. Sequential [3 + 2] Cycloaddition/1,3-H Shift Reaction for the Synthesis of CF;-Containing Spiropyrazoline Oxindole

S
EtOOC
Me / . NH3CI NaNO, (6 eq.)
(0] CF; DCM/H0
I\N/Ie 0-25°C
1b 2(5eq)

91% yield, >95:5 d.r.

protecting group could participate in this reaction very well,
providing the corresponding products 4n—q in 74—92% yield.
Variation of the ester moiety (e.g, Me, Et, or ‘Bu) had less
effect on both the reaction efficiency and stereoselectivity.
Remarkably, the reaction was also successfully extended to 3-
ylideneoxindoles with (hetero)aromatic carbonyl substituents.
For example, the reactions with phenyl- and 2-thiophene-
substituted carbonyl groups worked very well, producing 4t and
4u in 99% and 98% yield, respectively. Perhaps more
importantly, spirooxindole 4v, an analogue of an HIV-1
NNRTI, was successfully synthesized in one step from ethyl
(E)-2-(5-bromo-2-oxoindolin-3-ylidene)acetate by this meth-
odology, which further highlights the synthetic potential of this
transformation.* All of these products were fully characterized
by '"H NMR, *C NMR, and HRMS analysis. The structure and
stereochemistry of product 4c were also unambiguously
confirmed by single-crystal X-ray analysis.">

Interestingly, an alternative sequential [3 + 2] cycloaddition/
1,3-H shift reaction was also disclosed during optimization of
the reaction conditions. As shown in Scheme 4, in the case of
ethyl (E)-2-(1,5-dimethyl-2-oxoindolin-3-ylidene)acetate (1b),
the reaction formed CF;-substituted spiropyrazoline oxindole §
with high diastereoselectivity when DABCO was used as the
base (91% yield, >95:5 d.r.; Scheme 4). It is noteworthy that
this process provides a complementary method to synthesize
compounds bearing both oxindole and pyrazoline skeletons."?

In summary, we have developed the first example of a
sequential [3 + 2] cycloaddition/ring contraction reaction of 3-
ylideneoxindoles with in situ-generated CF;CHN, under
transition-metal-free conditions. This method provides a
straightforward approach to highly substituted and function-
alized CF;-containing 3,3’-cyclopropyl spirooxindole deriva-
tives in excellent yields with great diastereoselectivities.
Significantly, a CF;-substituted analogue of an HIV-1 NNRTI
can be synthesized in one step by this methodology. Moreover,
a sequential [3 + 2] cycloaddition/1,3-H shift reaction
promoted by DABCO was also disclosed, providing a new
access to CF;-containing spiropyrazoline oxindoles.

B EXPERIMENTAL SECTION

General Considerations. Unless otherwise noted, materials were
purchased from commercial suppliers and used without further
purification. All of the solvents were treated according to known
methods.

General Procedure for the Synthesis of 3-Ylideneoxindoles.
To a stirred solution of ethyl 2-(triphenylphosphoranylidene )acetate
(22 mmol, 1.1 equiv) in anhydrous THF (50 mL) was added N-
methylindoline-2,3-dione (20 mmol, 1.0 equiv) at 0 °C. The mixture
was stirred at the same temperature until the reaction was complete, as
monitored by TLC analysis. The crude product was purified by flash
chromatography on silica gel (petroleum ether/ethyl acetate S:1).
Compound la was obtained as a red solid (1.74 g, 86% yield). The
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other 3-ylideneoxindoles were prepared according to the above
procedure using the corresponding acetates and diones.

General Procedure for the Sequential [3 + 2] Cycloaddition/
Ring Contraction Reaction of Alkylenyloxindoles with in Situ-
Generated CF;CHN,. CF,CH,NH,-HCl (135.5 mg, 1.0 mmol, 5
equiv), NaNO, (83 mg, 1.2 mmol, 6 equiv), and H,0 (0.2 mL) were
stirred in 3.0 mL of toluene at 0 °C for 1 h in a 10 mL Schlenk tube
under Ar. Then alkylenyloxindole 1 (0.20 mmol) was added, and the
reaction mixture was stirred at room temperature for 36 h. The
mixture was then heated to reflux for 1.5 h with vigorous stirring.
Upon completion of the reaction (as monitored by TLC), the reaction
mixture was cooled to room temperature and then directly subjected
to column chromatography to afford the desired product 4.

General Procedure for the Sequential [3 + 2] Cycloaddition/
1,3-H Shift Reaction for the Synthesis of CF;-Containing
Spiropyrazoline Oxindoles with in Situ-Generated CF;CHN,.
CF;CH,NH,-HCI (135.5 mg, 1.0 mmol, 5 equiv), NaNO, (83 mg, 1.2
mmol, 6 equiv), and H,O (0.2 mL) were stirred in 3.0 mL of DCM at
0 °C for 1 h in a 10 mL Schlenk tube under Ar. Then DABCO (11.2
mg, 0.1 mmol) (0.5 equiv) was added, followed by alkylenyloxindole 1
(0.20 mmol), and the reaction mixture was stirred at room
temperature for 48 h. Upon completion of the reaction (as monitored
by TLC), the reaction mixture was cooled to room temperature and
then directly subjected to column chromatography to afford the
desired product S.

Ethyl 1-Methyl-2-oxo-5'-(trifluoromethyl)-4',5'-dihydrospiro-
[indoline-3,3'-pyrazole]-4'-carboxylate (3a). 48 h, white solid (59.4
mg, 87% yield), mp 120.6 °C, dr. >95:5. '"H NMR (400 MHz,
CDCL,): 6 7.43 (t, ] = 7.5 Hz, 1H), 7.04 (t, ] = 7.7 Hz, 1H), 6.96 (d, ]
= 7.8 Hz, 1H), 6.77 (d, ] = 7.5 Hz, 1H), 5.96—5.89 (m, 1H), 3.93—
3.72 (m, 2H), 3.64 (d, ] = 9.1 Hz, 1H), 3.38 (s, 3H), 0.68 (t, J = 7.1
Hz, 3H). *C NMR (101 MHz, CDCL,): § 170.2, 166.8, 144.4, 131.6,
124.5,123.2, 123.0 (q, ] = 277 Hz), 120.6, 108.9, 99.4,91.8 (q, ] = 28.7
Hz), 61.9, 45.0, 26.9, 13.1. ’F NMR (376 MHz, CDCL,): § —71.06.
MS (EI): m/z 341.03 (M*). HRMS (ESI-TOF) for C,{H,,F;N;0; [M
+ Na]*: calcd 364.0879, found 364.0885.

Ethyl 1'-Methyl-2’'-oxo-3-(trifluoromethyl)spiro[cyclopropane-
1,3'-indoline]-2-carboxylate (4a). 48 h, colorless oil (56.9 mg, 91%
yield), d.r. >95:5. "TH NMR (600 MHz, CDCl,): § 7.37 (t, ] = 7.7 Hz,
1H), 7.33 (d, ] = 7.7 Hz, 1H), 7.08 (t, ] = 7.6 Hz, 1H), 6.94 (d, ] = 7.7
Hz, 1H), 4.25—4.13 (m, 2H), 3.38 (d, ] = 7.7 Hz, 1H), 3.33 (s, 3H),
3.20-3.14 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H). '*C NMR (100 MHz,
CDClLy): 6 170.1, 166.2, 144.0, 128.9, 123.5, 123.3 (q, ] = 274 Hz),
122.5, 1224, 108.3, 62.0, 362, 35.3 (q, ] = 41.0 Hz), 349 (d, ] = 3
Hz), 26.8, 13.9. ’F NMR (376 MHz, CDCl,): § —58.17. MS (EI): m/
z 31323 (M*). HRMS (ESI-TOF) for C;sH,,F;NO; [M + H]*: caled
314.0999, found 314.1000.

Ethyl 1',5'-Dimethyl-2'-oxo0-3-(trifluoromethyl)spiro-
[cyclopropane-1,3'-indoline]-2-carboxylate (4b). 48 h, white solid
(57.6 mg, 88% yield), mp 107.9 °C, d.r. >95:5. "H NMR (600 MHg,
CDCL,): 6 7.14 (d, ] = 7.9 Hz, 1H), 7.12 (s, 1H), 6.80 (d, ] = 7.9 Hz,
1H), 4.24—4.10 (m, 2H), 3.34 (d, J = 7.7 Hz, 1H), 3.28 (s, 3H), 3.14—
3.09 (m, 1H), 2.33 (s, 3H), 1.23 (t, ] = 7.1 Hz, 3H). *C NMR (100
MHz, CDCL,): & 170.0, 166.2, 141.7, 132.1, 129.1, 123.5, 1234 (q, ] =
273 Hz), 123.1, 108.1, 62.0, 36.2, 352 (q, J = 40.7 Hz), 34.8, 26.7,
21.1, 13.9. 'F NMR (376 MHz, CDCl,): § —58.29. MS (EI): m/z
32727 (M*). HRMS (ESI-TOF) for C,¢H,(F;NO; [M + H]*: caled
328.115S, found 328.1155.
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Ethyl 5’-Methoxy-1'-methyl-2’-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3'-indoline]-2-carboxylate (4c). 48 h, yellow solid
(55.6 mg, 81% yield), mp 90.9 °C, d.r. >95:5. 'H NMR (600 MHg,
CDCL): 6 6.96 (d, ] = 2.4 Hz, 1H), 6.87 (dd, ] = 8.5 Hz, 2.5 Hz, 1H),
6.80 (d, ] = 8.5 Hz, 1H), 4.23—4.11 (m, 2H), 3.78 (s, 3H), 3.35 (d, ] =
7.8 Hz, 1H), 3.27 (s, 3H), 3.13—3.08 (m, 1H), 1.24 (t, ] = 7.2 Hgz,
3H). 3C NMR (100 MHz, CDCl,): § 169.8, 166.1, 155.8, 137.5,
124.6,123.3 (q, J = 273 Hz), 113.5, 109.7, 108.7, 62.1, 55.7, 36.4, 35.4
(q, J = 41.0 Hz), 34.8, 26.8, 13.9. '°’F NMR (376 MHz, CDCL,): §
—58.28. MS (EI): m/z 344.0 (M'). HRMS (ESI-TOF) for
Cy6HF;NO, [M + H]*: caled 344.1104, found 344.1107.

Ethyl 5’-Fluoro-1'-methyl-2"-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3’-indoline]-2-carboxylate (4d). 36 h, yellow solid
(57.7 mg, 87% yield), mp 87.4 °C, d.r. >95:5. "H NMR (600 MHg,
CDCL): 6 7.13 (dd, ] = 8.6 Hz, 2.6 Hz, 1H), 7.08—7.02 (m, 1H), 6.84
(dd, J = 8.6 Hz, 4.2 Hz, 1H), 4.27—4.13 (m, 2H), 3.37 (d, J = 7.8 Hz,
1H), 3.29 (s, 3H), 3.15-3.08 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H). 1C
NMR (100 MHz, CDCl,): § 169.8, 166.0, 158.9 (d, J = 239 Hz), 140.1
(d,J=1Hz), 125.0 (d, ] = 10 Hz), 123.2 (q, ] =273 Hz), 115.1 (d, ] =
23 Hz), 111.0 (d, J = 27 Hz), 108.8 (d, ] = 8 Hz), 62.3,36.3,35.7 (q, ]
= 41.0 Hz), 349 (d, J = 3 Hz), 26.9, 13.9. ’F NMR (376 MHz,
CDCl,): § —58.35, —119.99. MS (EI): m/z 331.26 (M*). HRMS (ESI-
TOF) for C;H;5F,NO; [M + H]*: caled 332.0904, found 332.0893.

Ethyl 5’-Bromo-1'-methyl-2'-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3’-indoline]-2-carboxylate (4e). 36 h, white solid
(714 mg, 91% yield), mp 90.0 °C, d.r. >95:5. "H NMR (600 MHz,
CDCly): 6 7.47 (d, ] = 8.6 Hz, 2H), 6.79 (d, ] = 8.0 Hz, 1H), 4.26—
4.15 (m, 2H), 3.36 (d, J = 7.8 Hz, 1H), 3.28 (s, 3H), 3.15—3.10 (m,
1H), 1.26 (t, ] = 7.1 Hz, 3H). *C NMR (100 MHz, CDCl,): § 169.5,
165.9, 143.1, 131.7, 125.7, 125.4, 123.1 (q, ] = 274 Hz), 115.1, 109.7,
62.3,35.8,35.6 (q, ] = 39.7 Hz), 35.0, 26.8, 13.9. F NMR (376 MHz,
CDCly): § —63.01. MS (EI): m/z 391.21 (M"). HRMS (ESI-TOF) for
C,sH,3BrF;NO; [M + H]*: caled 392.0104, found 392.0090.

Ethyl 1’-Methyl-5'-nitro-2'-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3’-indoline]-2-carboxylate (4f). 36 h, yellow solid
(59.4 mg, 83% yield), mp 143.1 °C, d.r. >95:5. '"H NMR (400 MHz,
CDCly): 6 8.33 (d, J = 8.6 Hz, 1H), 8.28 (s, 1H), 7.01 (d, ] = 8.6 Hz,
1H), 4.28—4.17 (m, 2H), 3.42 (d, ] = 7.9 Hz, 1H), 3.38 (s, 3H), 3.31—
3.26 (m, 1H), 1.27 (t, ] = 7.1 Hz, 3H). *C NMR (100 MHz, CDCl,):
5170.2, 165.6, 149.4, 143.3, 125.8, 124.2, 122,9 (q, ] = 275 Hz), 118.8,
108.0, 62.6, 35.9 (q, J = 41 Hz), 35.6 (d, ] = 2 Hz), 35.4 (d, ] = 2 Hz),
27.3, 13.9. F NMR (376 MHz, CDCL): § —58.54. MS (EI): m/z
359.15 (M*). HRMS (ESI-TOF) for C,sH,;3F;N,O [M + H]": caled
359.0849, found 359.0856.

Ethyl 1’-Methyl-2'-oxo-5'-(trifluoromethoxy)-3-(trifluoromethyl)-
spiro[cyclopropane-1,3'-indoline]-2-carboxylate (4g). 36 h, white
solid (70.0 mg, 88% yield), mp 69.2 °C, d.r. >95:5. "H NMR (400
MHz, CDCl,): § 7.27 (s, 1H), 7.23 (d, ] = 9.0 Hz, 1H), 6.91 (d,] = 8.5
Hz, 1H), 427—4.11 (m, 2H), 3.38 (d, ] = 7.7 Hz, 1H), 3.31 (s, 3H),
3.20-3.12 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H). *C NMR (100 MHz,
CDClLy): § 169.9, 165.9, 144.5, 142.8, 124.9, 123.1 (q, ] = 274 Haz),
1229 (q, ] = 256 Hz), 122.1, 1169, 108.7, 62.4, 36.0 (d, ] = 2 Hz),
35.7 (q, J = 41 Hz), 35.1 (d, ] = 3 Hz), 269, 13.9. ’F NMR (376
MHz, CDCl;): § —58.31, —58.83. MS (EI): m/z 398.0 (M*). HRMS
(ESI-TOF) for C,¢H;3FNO, [M + H]*: caled 398.0822, found
398.0826.

Ethyl 4’-Bromo-1'-methyl-2’-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3'-indoline]-2-carboxylate (4h). 48 h, yellow solid
(75.3 mg, 96% yield), mp 107.2 °C, d.r. >95:5. "H NMR (400 MHeg,
CDCly): 6§ 7.23 (d, ] = 8.0 Hz, 1H), 7.20 (t, ] = 7.9 Hz, 1H), 6.89 (d, ]
= 7.5 Hz, 1H), 444 (d, ] = 8.4 Hz, 1H), 4.29—4.22 (m, 2H), 3.25 (s,
3H), 3.06—3.01 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H). *C NMR (100
MHz, CDCLy): § 171.4, 165.3, 146.6, 129.9, 128.0, 123.8 (q, J = 273
Hz), 1204, 118.1, 107.9, 62.0, 37.7, 36.9 (q, ] = 41.3 Hz), 29.0, 26.9,
14.0. F NMR (376 MHz, CDCl,): § —56.99. MS (EI): m/z 391.1
(M*), 393.1 ([M + 2]*). HRMS (ESI-TOF) for C,;H,;BrF;NO; [M +
H]": calcd 392.0104, found 392.0095.

Ethyl 4’-Chloro-1'-methyl-2'-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3’-indoline]-2-carboxylate (4i). 48 h, yellow solid
(69.0 mg, 99% yield), mp 88.6 °C, d.r. >95:5. 'H NMR (400 MHeg,
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CDCly): 5 7.28 (t, ] = 8.1 Hz, 1H), 7.04 (d, ] = 8.2 Hz, 1H), 6.85 (d, ]
= 7.8 Hz, 1H), 4.29—4.21 (m, 3H), 3.26 (s, 3H), 3.09—3.04 (m, 1H),
1.30 (t, ] = 7.1 Hz, 3H). *C NMR (100 MHz, CDCL,): § 171.2, 165.2,
146.3, 130.0, 129.7, 124.5, 123.7 (q, ] = 272 Hz), 118.9, 107.3, 61.9,
36.8,36.5 (g, ] = 41.0), 29.2, 26.9, 13.9. ’F NMR (376 MHz, CDCl,):
5§ =57.71. MS (EI): m/z 34725 (M'). HRMS (ESI-TOF) for
C;sH3CIF;NO; [M + H]*: caled 348.0609, found 348.0608.

Ethyl 6’-Bromo-1’'-methyl-2’-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3’-indoline]-2-carboxylate (4j). 36 h, white solid
(71.5 mg, 91% yield), mp 129.5 °C, d.r. >95:5. "TH NMR (600 MHg,
CDCly): 6 7.27 (d, ] = 2.6 Hz, 1H), 7.18 (s, 2H), 7.06 (s, 1H), 4.23—
4.10 (m, 2H), 3.34 (d, ] = 7.8 Hz, 1H), 3.28 (s, 3H), 3.14—3.10 (m,
1H), 1.24 (t, ] = 6.9 Hz, 3H). *C NMR (100 MHz, CDCl,): § 169.9,
166.0, 145.3, 125.3, 123.8, 123.1 (q, J = 274 Hz), 122.6, 122.3, 111.8,
622,359, 35.3 (q, ] = 40.7 Hz), 34.9, 26.8, 14.0. ’F NMR (376 MHz,
CDCL,): § —58.36. MS (EI): m/z 391.24 (M"). HRMS (ESI-TOF) for
CysH3BrF;NO; [M + H]*: caled 392.0104, found 392.0094.

Ethyl 6’-Chloro-1'-methyl-2’-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3'-indoline]-2-carboxylate (4k). 48 h, yellowish
solid (64.8 mg, 93% yield), mp 102.5 °C, d.r. >95:5. '"H NMR (600
MHz, CDCl,): § 7.22 (d, ] = 7.8 Hz, 1H), 7.19 (t, ] = 8.1 Hz, 1H),
6.89 (d, ] = 7.2 Hz, 1H), 4.45 (d, ] = 8.4 Hz, 1H), 4.30—4.21 (m, 2H),
3.25 (s, 3H), 3.06—3.01 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H). *C NMR
(100 MHz, CDCly): 6 171.4, 165.2, 146.6, 129.9, 128.0, 123.8 (q, ] =
273 Hz), 1204, 118.1, 107.9, 62.0, 37.6, 36.8 (q, ] = 41 Hz), 28.9, 26.8,
14.0. ’F NMR (376 MHz, CDCl,): § —57.03. MS (EI): m/z 348.0
(M*). HRMS (ESI-TOF) for C;sH;3CIF;NO; [M + HJ*: caled
348.0609, found 348.0599.

Ethyl 1'-Methyl-2'-ox0-3,7'-bis(trifluoromethyl)spiro-
[cyclopropane-1,3’-indoline]-2-carboxylate (4l). 36 h, red oil (60.3
mg, 79% yield), d.r. >95:5. '"H NMR (400 MHz, CDCL): & 7.64 (s,
1H), 7.50 (s, 1H), 7.12 (s, 1H), 4.23—4.13 (m, 2H), 3.51 (s, 3H), 3.40
(s, 1H), 3.19 (s, 1H), 1.24 (s, 3H). *C NMR (100 MHz, CDCL,): §
171.0, 165.8, 142.0, 126.8 (q, ] = 5.7 Hz), 125.8, 125.7, 1234 (q, ] =
270 Hz), 123.1 (q, ] = 274 Hz), 121.8, 112.9 (q, ] = 33 Hz), 62.4, 36.1,
359 (q, J = 41 Hz), 35.0, 29.6 (q, ] = 6.3 Hz), 14.0. ’F NMR (376
MHz, CDCL,): § —53.64, —58.47. MS (EI): m/z 382.0 (M*). HRMS
(ESI-TOF) for C¢H;sFNO; [M + H]*: caled 382.0872, found
382.0879.

Ethyl 7’-Fluoro-1'-methyl-2'-oxo-3-(trifluoromethyl)spiro-
[cyclopropane-1,3'-indoline]-2-carboxylate (4m). 36 h, white solid
(56.4 mg, 85% yield), mp 89.0 °C, d.r. >95:5. '"H NMR (400 MHzg,
CDCly): 6 7.09 (s, 1H), 7.06 (d, J = 12.4 Hz, 1H), 7.03—6.92 (m, 1H),
4.26—4.10 (m, 2H), 3.51 (s, 3H), 3.36 (d, ] = 7.8 Hz, 1H), 3.16—3.09
(m, 1H), 1.23 (t, ] = 7.1 Hz, 3H). *C NMR (100 MHz, CDCL,): §
169.8, 165.9, 147.7 (d, ] = 242 Hz), 130.8 (d, J = 9 Hz), 1262 (d, ] = 4
Hz), 1232 (q, J = 273 Hz), 123.0 (d, ] = 6 Hz), 118.3 (q, J = 3 Hz),
116.9 (d, ] = 19 Hz), 62.2, 36.2, 35.8 (q, ] = 41 Hz), 35.4, 29.4, 14.0.
YF NMR (376 MHz, CDCL): § —58.35, —136.56. MS (EI): m/z
33128 (M*). HRMS (ESI-TOF) for C;sH;F,NO; [M + H]*: calcd
332.0904, found 332.0891.

Ethyl 2’-Oxo-3-(trifluoromethyl)spiro[cyclopropane-1,3’-indo-
line]-2-carboxylate (4n). 48 h, white solid (49.2 mg, 82% yield),
mp 153.1 °C, d.r. >95:5. '"H NMR (600 MHz, CDCl,): 5 8.89 (s, 1H),
7.28 (t, ] = 7.3 Hz, 2H), 7.03 (t, ] = 7.7 Hz, 1H), 6.97 (d, ] = 7.9 Hz,
1H), 4.26—4.11 (m, 2H), 3.36 (d, ] = 7.8 Hz, 1H), 3.18—3.13 (m,
1H), 1.24 (t, ] = 7.2 Hz, 3H). *C NMR (100 MHz, CDCl,): § 173.0,
166.1, 141.5, 1289, 124.0, 123.4 (q, J = 273 Hz), 122.6, 122.5, 110.5,
622, 36.7, 35.6 (q, ] = 41.0 Hz), 35.0, 14.0. ’F NMR (376 MHz,
CDCly): § —58.21. MS (EI): m/z 300.1 (M*). HRMS (ESI-TOF) for
C4H,F;NO; [M + H]*: caled 300.0842, found 300.0846.

Ethyl 2'-Oxo-1'-phenyl-3-(trifluoromethyl)spiro[cyclopropane-
1,3'-indoline]-2-carboxylate (40). 36 h, white solid (69.1 mg, 92%
yield), mp 90.9 °C, d.r. >95:5. "H NMR (400 MHz, CDCL,): § 7.53 (t,
J =7.5 Hz, 2H), 7.45—7.39 (m, 4H), 7.26 (t, ] = 7.5 Hz, 1H), 7.08 (t, ]
=7.5 Hz, 1H), 6.90 (d, ] = 7.8 Hz, 1H), 4.30—4.12 (m, 2H), 3.45 (d, J
=7.7 Hz, 1H), 3.25-3.18 (m, 1H), 1.26 (t, ] = 7.1 Hz, 3H). 3*C NMR
(100 MHz, CDCL,): § 169.6, 166.2, 144.0, 134.0, 129.6, 128.8, 128.3,
126.5, 1234, 123.3 (q, ] = 274 Hz), 123.0, 122.8, 109.7, 62.2, 36.4 (d, ]
=2Hz), 36.0 (q,] = 41.3 Hz), 35.3 (d, ] = 3 Hz), 14.0. ’F NMR (376
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MHz, CDCL,): § —58.17. MS (EI): m/z 376.1 (M*). HRMS (ESI-
TOF) for C,,H;(F;NO; [M + H]": caled 376.115S, found 376.1158.

Ethyl 1’-Benzyl-2'-oxo-3-(trifluoromethyl)spiro[cyclopropane-
1,3'-indoline]-2-carboxylate (4p). 36 h, white solid (66.3 mg, 85%
yield), mp 108.2 °C, d.r. >95:5. "H NMR (600 MHz, CDCl,): § 7.37—
7.24 (m, 7H), 7.22 (t, ] = 7.0 Hz, 1H), 7.01 (t, ] = 7.2 Hz, 1H), 6.80
(d, J = 7.7 Hz, 1H), 5.11 (d, ] = 15.6 Hz, 1H), 4.87 (d, J = 15.6 Hz,
1H), 426—4.11 (m, 2H), 3.46—3.43 (m, 1H), 3.19-3.17 (m, 1H),
1.25 (t, ] = 8.2 Hz, 3H). *C NMR (100 MHz, CDCl,): § 170.4, 166.2,
143.2, 135.4, 128.8, 128.8, 127.7, 127.2, 123.6, 123.4 (q, J = 274 Hz),
122.6, 122.5, 109.3, 62.1, 44.3, 36.2 (d, ] = 3 Hz), 35.7 (q, ] = 40.7
Hz), 35.0 (d, ] = 3 Hz), 14.0. ’F NMR (376 MHz, CDCl,): § —58.19.
MS (EI): m/z 390.1 (M*). HRMS (ESI-TOF) for C,;H;sF;NO; [M +
H]": caled 390.1312, found 390.1317.

Ethyl 1'-Allyl-2'-oxo-3-(trifluoromethyl)spiro[cyclopropane-1,3’-
indoline]-2-carboxylate (4q). 48 h, purple solid (50.1 mg, 74%
yield), mp 89.9 °C, d.r. >95:5. '"H NMR (600 MHz, CDCL,): § 7.33—
7.29 (m, 2H), 7.04 (t, ] = 7.6 Hz, 1H), 6.90 (d, ] = 7.8 Hz, 1H), 5.89—
5.83 (m, 1H), 5.25 (s, 1H), 5.23 (d, ] = 4.7 Hz, 1H), 4.48—4.36 (m,
2H), 4.25—4.10 (m, 2H), 3.38 (d, ] = 7.7 Hz, 1H), 3.17-3.13 (m,
1H), 1.23 (t, ] = 7.1 Hz, 3H). *C NMR (100 MHz, CDCl,): § 169.9,
166.2, 143.2, 131.0, 128.8, 123.5, 123.3 (q, J = 274 Hz), 122.5, 122.5,
117.8, 109.2, 62.1, 42.9, 36.1, 35.6 (q, ] = 40.7 Hz), 34.9, 14.0. F
NMR (376 MHz, CDCl,): § —58.37. MS (EI): m/z 340.1 (M").
HRMS (ESI-TOF) for C;H;(F;NO; [M + HJ*: caled 340.1155,
found 340.1165.

Methyl 1’-Methyl-2'-oxo-3-(trifluoromethyl)spiro[cyclopropane-
1,3'-indoline]-2-carboxylate (4r). 36 h, purple solid (52.6 mg, 88%
yield), mp 94.6 °C, d.r. >95:5. "H NMR (600 MHz, CDCL,): § 7.35 (t,
J=7.7Hz, 1H), 7.30 (d, ] = 7.5 Hz, 1H), 7.06 (t, ] = 7.6 Hz, 1H), 6.91
(d, J = 7.8 Hz, 1H), 3.72 (s, 3H), 3.37 (d, ] = 7.7 Hz, 1H), 3.30 (s,
3H), 3.18-3.13 (m, 1H). C NMR (100 MHz, CDCL): § 170.0,
166.7, 144.1, 1289, 123.4, 123.3 (q, J = 273 Hz), 122.6, 122.4, 108.4,
52.8,36.3 (d, ] = 3 Hz), 35.3 (q, ] = 40.7 Hz), 34.7 (d, ] = 3 Hz), 26.8.
F NMR (376 MHz, CDCL,): § —58.43. MS (EI): m/z 300.0 (M*).
HRMS (ESI-TOF) for C,H;,F;NO; [M + HJ*: caled 300.0842,
found 300.0849.

tert-Butyl 1'-Methyl-2'-oxo0-3-(trifluoromethyl)spiro-
[cyclopropane-1,3’-indoline]-2-carboxylate (4s). 48 h, white solid
(62.8 mg, 92% yield), mp 101.2 °C, d.r. >95:5. "H NMR (600 MHz,
CDCly): 6 7.33 (t, ] = 7.7 Hz, 1H), 7.27 (d, ] = 10.0 Hz, 1H), 7.03 (t, ]
= 7.6 Hz, 1H), 691 (d, ] = 7.8 Hz, 1H), 3.31 (s, 3H), 3.28 (s, 1H),
3.10-3.05 (m, 1H), 1.39 (s, 9H). *C NMR (100 MHz, CDCL,): §
170.4, 165.0, 144.0, 128.7, 123.6, 123.5 (q, ] = 274 Hz), 122.4, 122.3,
108.3, 83.1, 359, 35.1 (q, J = 40.7 Hz), 27.9, 26.8. ’F NMR (376
MHz, CDClLy): § —58.26. MS (EI): m/z 342.2 (M*). HRMS (ESI-
TOF) for C;;H;sF;NO; [M + H]": calcd 342.1312, found 342.1313.

2-Benzoyl-1'-methyl-3-(trifluoromethyl)spiro[cyclopropane-1,3’-
indolin]-2'-one (4t). 48 h, orange solid (68.7 mg, 99% yield), mp
129.0 °C, d.r. >95:5. "H NMR (600 MHz, CDCl;): 6 7.91 (d, J = 7.7
Hz, 2H), 7.56 (t, ] = 6.6 Hz, 1H), 7.43 (t, ] = 6.9 Hz, 2H), 7.27 (t, ] =
6.7 Hz, 1H), 7.12 (d, ] = 7.6 Hz, 1H), 6.98 (t, ] = 7.3 Hz, 1H), 6.87 (4,
J=7.6 Hz, 1H), 4.28 (d, ] = 7.5 Hz, 1H), 3.51-3.46 (m, 1H), 3.34 (s,
3H). 3C NMR (100 MHz, CDCl,): § 190.1, 170.3, 143.7, 135.9,
134.1, 128.8, 128.7, 128.5, 123.7 (q, J = 273 Hz), 123.3, 122.7, 122.1,
108.3, 38.3, 37.9, 34.9 (q, ] = 40.3 Hz), 26.9. ’F NMR (376 MHz,
CDCly): § —58.27. MS (EI): m/z 346.0 (M*). HRMS (ESI-TOF) for
CyoH,F;NO, [M + H]*: caled 346.1049, found 346.1058.

1’-Methyl-2-(thiophene-2-carbonyl)-3-(trifluoromethyl)spiro-
[cyclopropane-1,3'-indolin]-2'-one (4u). 48 h, yellow solid (68.5 mg,
98% yield), mp 137.3 °C, d.r. >95:5. "TH NMR (600 MHz, CDCl,): §
7.78 (s, 1H), 7.68 (d, ] = 3.9 Hz, 1H), 7.29 (t, ] = 7.6 Hz, 1H), 7.22 (d,
J=7.5Hz, 1H), 7.10 (s, 1H), 7.02 (, ] = 7.5 Hz, 1H), 6.87 (d, ] = 7.7
Hz, 1H), 4.17 (d, ] = 7.6 Hz, 1H), 3.47—3.42 (m, 1H), 3.31 (s, 3H).
3C NMR (100 MHz, CDCly): § 182.5, 170.2, 143.8, 143.3, 135.6,
133.6, 128.8, 128.5, 123.6 (q, J = 273 Hz), 123.3, 122.7, 122.5, 108.3,
38.7,38.1,34.9 (q, ] = 40.3 Hz), 26.8. F NMR (376 MHz, CDCL,): §
—58.25. MS (EI): m/z 352.1 (M'). HRMS (ESI-TOF) for
C;H,FsNO,S [M + H]*: caled 352.0614, found 352.0612.
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Ethyl 5’-Bromo-2'-oxo-3-(trifluoromethyl)spiro[cyclopropane-
1,3'-indoline]-2-carboxylate (4v). 36 h, white solid (61.7 mg, 82%
yield), mp 187.8 °C, d.r. >95:5. 'H NMR (400 MHz, CDCl,): § 9.90
(s, 1H), 7.45 (s, 1H), 7.41 (d, ] = 8.0 Hz, 1H), 6.90 (d, ] = 7.8 Hg,
1H), 4.26—4.20 (m, 2H), 3.35 (d, J = 7.2 Hz, 1H), 3.21-3.12 (m,
1H), 1.27 (t, ] = 6.2 Hz, 3H). *C NMR (100 MHz, CDCl,): § 172.7,
165.8, 140.5, 131.8, 126.0, 125.9, 123.1 (q, J = 273 Hz), 115.2, 112.0,
62.5, 36.5, 35.9 (q, ] = 41.0 Hz), 352 (d, ] = 2 Hz), 14.0. ’F NMR
(376 MHz, CDCl,): § —58.33. MS (EI): m/z 377.32 (M"). HRMS
(ESI-TOF) for C,,H;;BrF;NO; [M + HJ]*: caled 377.9947, found
377.9955.

Ethyl 1,5-Dimethyl-2-oxo-5'-(trifluoromethyl)-2',4’-dihydrospiro-
[indoline-3,3'-pyrazole]-4'-carboxylate (5). 72 h, white solid (63.0
mg, 91% yield), mp 1350 °C, dr. »95:5. '"H NMR (600 MHz,
CDCly): § 7.17 (d, ] = 7.9 Hz, 1H), 7.10 (s, 1H), 6.75 (d, ] = 7.8 Hz,
1H), 6.17 (s, 1H), 4.58 (s, 1H), 3.91-3.81 (m, 2H), 3.24 (s, 3H), 2.31
(s, 3H), 0.88 (t, J = 7.1 Hz, 3H). 3C NMR (100 MHz, CDCl,): §
174.6, 165.1, 140.9, 137.2 (q, ] = 38 Hz), 133.1, 131.3, 125.4, 125.1,
119.8 (q, J = 269 Hz), 108.4, 73.1, 61.6, 58.6 (d, ] = 3.0 Hz), 26.7,
20.8, 13.4. F NMR (376 MHz, CDCL): § —63.45. MS (EI): m/z
355.12 (M*). HRMS (ESI-TOF) for C;4H;¢F;N;0; [M + Na]*: caled
378.1036, found 378.1036.
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